Skip to main content

Week 29 (May 1, 2019): CAD of Induction Charger Hub & Podcar Door, then 3D Printing

This week, while David worked on the Raspberry Pi and the Arduino code, Patrick completed the CAD (computer-aided-design) models. We had to create 3D solid modeling of two parts: the induction charging hub to hold the induction transmitter coil and the pod car door to hold the induction receiver coil. Over the weeks, the CAD models underwent several revisions.

The induction hub saw two revisions, with the third design being the final version. Because the 3D printer available to us in the shop, the Prusa Mark3 i2, had a bed length of 10 inches, we had to restrict the length of the charging hub to a safe 9.5 inches.

Version 1 simply entailed us placing the hub on the side of the bracket and then screwing it into place on the bracket’s side via the two holes at the top:


For version 2, in addition to placing the hub on the side of the bracket and then screwing it into place on the bracket’s side via the two holes at the top, the bracket would wrap around the two brackets. Furthermore, while the first version was designed to reach a specific height, version 2 was designed to allow for height adjustment. This was made possible by cutting out slots on the side flanges of the hub:



Version 3, the final version, features another addition by allowing for adjustment of the distance between the hub and the podcar. This was done by separating the hub into 2 pieces: the T-shaped foundation piece that will be screwed into place to the side of the bracket (the part colored dark purple in the image below), and the spatula-shaped hanging piece that will slide along the foundation piece for the depth adjustment (the part colored light purple in the image below):



As a reminder, there will be one induction charging station in each of the two offline stations, i.e. offline rails:

The second part to be modeled was a new pod car door to account for the addition of the induction receiver coil, which was accomplished by adding a hole on the existing pod car door:

Our 2D detail drawings of the induction charging hub and the pod car door are shown below:


On a final note, we were able to get everything 3D printed – the two charging hubs and the three pod car doors for each of the three pod cars – at the Maker Space. We would not have been able to finish our project if it wasn’t for their help, so we would like to express extreme gratitude to Maker Space.   

Comments

Popular posts from this blog

Week 30 (May 8, 2019): Prototype Evaluation Day, Final Circuit, Incorporating 3D printed parts, Final Presentation, Posters, & Maker Faire

Today, we held Prototype Evaluation Day. Like the rest of the senior project classes, the advisor walks around the classroom, evaluating the senior project apparatuses, asking the student teams to demonstrate their devices, and explain their design, though processes, and results. Dr. Furman and Ron examined and inspected the Full-Scale model, then the Half-Scale model, and lastly, us, the Small-Scale Team. We had completed our circuit to power one pod car and one of the two induction charging stations prior to Evaluation Day, so we were able to successfully demonstrate the pod car driving around the track as well as the induction charging. While we were still troubleshooting issues with the tablet’s Raspberry Pi communicating with the Arduino, the Arduino is still capable of operating on its own, so we could at least demonstrate the motor driving the pod car around the track and through the offline stations. Depicted below is our final circuit that powers the pod car: Dep...

Week 20 (Feb. 27, 2019): Power Electronics – Battery & Amplifier

Since last week, I have been working on the current amplifier for the induction charger. We decided to abandon using the TPS53313 step down voltage regulator-current amplifier IC (rated at a maximum of 6A continuous output current) because we found that supplying +5V to a 3.7V LiPo battery was possible and safe. Additionally, charging a LiPo battery at 6A was found to be dangerous; the battery should be charged at 25% of the capacity rating (.25 x C), or .25 x mAh. In the case of the 6600mAh battery, it should be recharged at a rate of 1.65A or less. The last reason is that dealing with a surface mount device (SMT) is a bit difficult. I started out using a BJT NPN transistor (model: 2N3904), something I was most familiar with. However, its datasheet states that it has a 200 mA maximum continuous collector current rating. This is a significantly low current. Most, if not all, fast charging adapters today have a 2 A charging rate. While I don’t want to charge the LiPo batteri...

Week 0 (Aug. 23, 2018): Beginning Spartan Superway

Hello, and welcome to my Spartan Superway blog! My name is Patrick Barrera, and I am a senior mechanical engineering student with a focus in mechatronics. Once I graduate, I hope to go into at least one of my areas of interest: electronics, programming, biotechnology, and machine learning. Some of my hobbies include staying in shape by working out and biking, doing DIY electronic and coding projects, and spending time with my family. Working on the Spartan Superway project interests me because I would like to be a part of the future ... the future of transportation, the future of technology, and the future of society. I like working in interdisciplinary teams, especially with focuses in mechanical design as well as mechatronics, because I am able to learn things from outside my areas of knowledge. I would also like to expand my knowledge and skill set into areas that I do not know, such as welding and other machine tools, and to get hands-on experience with the concepts I learned fro...