Skip to main content

Week 29 (May 1, 2019): CAD of Induction Charger Hub & Podcar Door, then 3D Printing

This week, while David worked on the Raspberry Pi and the Arduino code, Patrick completed the CAD (computer-aided-design) models. We had to create 3D solid modeling of two parts: the induction charging hub to hold the induction transmitter coil and the pod car door to hold the induction receiver coil. Over the weeks, the CAD models underwent several revisions.

The induction hub saw two revisions, with the third design being the final version. Because the 3D printer available to us in the shop, the Prusa Mark3 i2, had a bed length of 10 inches, we had to restrict the length of the charging hub to a safe 9.5 inches.

Version 1 simply entailed us placing the hub on the side of the bracket and then screwing it into place on the bracket’s side via the two holes at the top:


For version 2, in addition to placing the hub on the side of the bracket and then screwing it into place on the bracket’s side via the two holes at the top, the bracket would wrap around the two brackets. Furthermore, while the first version was designed to reach a specific height, version 2 was designed to allow for height adjustment. This was made possible by cutting out slots on the side flanges of the hub:



Version 3, the final version, features another addition by allowing for adjustment of the distance between the hub and the podcar. This was done by separating the hub into 2 pieces: the T-shaped foundation piece that will be screwed into place to the side of the bracket (the part colored dark purple in the image below), and the spatula-shaped hanging piece that will slide along the foundation piece for the depth adjustment (the part colored light purple in the image below):



As a reminder, there will be one induction charging station in each of the two offline stations, i.e. offline rails:

The second part to be modeled was a new pod car door to account for the addition of the induction receiver coil, which was accomplished by adding a hole on the existing pod car door:

Our 2D detail drawings of the induction charging hub and the pod car door are shown below:


On a final note, we were able to get everything 3D printed – the two charging hubs and the three pod car doors for each of the three pod cars – at the Maker Space. We would not have been able to finish our project if it wasn’t for their help, so we would like to express extreme gratitude to Maker Space.   

Comments

Popular posts from this blog

Week 30 (May 8, 2019): Prototype Evaluation Day, Final Circuit, Incorporating 3D printed parts, Final Presentation, Posters, & Maker Faire

Today, we held Prototype Evaluation Day. Like the rest of the senior project classes, the advisor walks around the classroom, evaluating the senior project apparatuses, asking the student teams to demonstrate their devices, and explain their design, though processes, and results. Dr. Furman and Ron examined and inspected the Full-Scale model, then the Half-Scale model, and lastly, us, the Small-Scale Team. We had completed our circuit to power one pod car and one of the two induction charging stations prior to Evaluation Day, so we were able to successfully demonstrate the pod car driving around the track as well as the induction charging. While we were still troubleshooting issues with the tablet’s Raspberry Pi communicating with the Arduino, the Arduino is still capable of operating on its own, so we could at least demonstrate the motor driving the pod car around the track and through the offline stations. Depicted below is our final circuit that powers the pod car: Dep...

Week 28 (Apr. 24, 2019): Final motor selection – Mini-Stepper Motor

Since last week, we have been trying to run the new brushless DC motor; however, it is still difficult to control, let alone its speed. Therefore, we had to pursue our alternative motor, the mini-stepper motor that runs at 5V. Found in Arduino starter kits, this mini-stepper motor is accompanied by its dedicated motor driver board, the ULN2003, which is a chip containing a series of Darlington pair transistors. An image of the stepper motor and the ULN2003 board is shown below:   Sources: https://www.adafruit.com/product/858 https://www.amazon.com/gp/product/B01CP18J4A/ref=ppx_yo_dt_b_asin_title_o03_s00?ie=UTF8&psc=1   We were able to successfully run the new mini-stepper motor with the sample code included with the Arduino starter kit. One benefit to using the sample code is that it utilizes the Stepper library’s functions. One use function is the setSpeed( ) function, which allows the user to set the RPM speed of the stepper motor. We found that the ma...

Week 27 (Apr. 17, 2019): ME 195B - Presentation #2 (Prototyping Stage Continuation) Reflection

Today, we completed Presentation 2, which is our 5 th  presentation overall, throughout the entire length of senior project, since last semester. Please refer to our Presentation #2 slides, embedded below. Covering the continuation of our prototyping efforts, we discussed progress on hardware acquisition, integration of components into a working circuit, and programming. Regarding programming, we were still working on the communication between the Raspberry Pi and the Arduino. And while the circuit is also coming together, there was one piece that gave us problems yesterday: the gimbal motor broke and so we had to order another motor that is not a gimbal but is still a brushless DC motor. An image of the new motor is found in our presentation slides below. While this was disheartening at first, we found that the gimbal is not intended for continuous rotation, but instead for precise movement, as they are used for cameras on drones. However, this was still a setback...